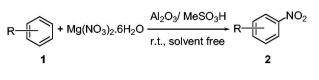
Al₂O₃/MeSO₃H (AMA) as a novel heterogeneous system for the nitration of aromatic compounds by magnesium nitrate hexahydrate Mona Hosseini-Sarvari* and Mina Tavakolian

Department of Chemistry, College of Science, Shiraz University, Shiraz 71454, Iran

 $Mg(NO_3)_2.6H_2O$ was an efficient nitrating agent in the presence of a mixture of $Al_2O_3/MeSO_3H$ (AMA) as a novel heterogeneous system for the nitration of aromatic compounds without use of any organic solvents and with high selectivity. The reaction proceeds at room temperature for the nitration of highly reactive aromatic compounds such as phenols and anilines.

Keywords: nitration, Al₂O₃, MeSO₃H, aromatic compounds, Mg(NO₃)₂.6H₂O, solvent-free conditions


Nitroaromatic compounds are important chemicals that have application as or in the formation of solvents, dyes, pharmaceuticals, agrochemicals, explosives, and plastics in industry. They are also useful intermediates for the preparation of other compounds, particularly amines, by reduction of nitro groups.¹⁻⁴ Electrophilic aromatic nitration is one of the most important reactions in organic chemistry, and the central role of the nitronium ion, NO_2^+ , in these processes has been well established.5-7 However, the majority of the reported methods for nitration of aromatic compounds suffer from one or more disadvantages such as low regioselectivity, over nitration, strongly acidic media, tedious work-up, oxidation of the reagents, not suitable for highly reactive and easily oxidised substrates such as aniline and phenols, and safety problems (storage, handling, using toxic reagents/catalysts or solvents).⁸⁻²⁰ These disadvantages have encouraged extensive efforts to develop alternative procedures such as using solid acids $^{2,9,15,17,21-25}$, other sources of $\mathrm{NO}_2^{+,8,9,26-28}$ organic nitrating agents (acetyl nitrate, benzoyl nitrate, and trimethylsilyl nitrate),^{29,30} etc.³¹⁻³³ However, these reported nitration procedures required special solvents or co-reagents.

Some of our previous work on the use of a mixture of $Al_2O_3/MeSO_3H$ (AMA) as a heterogeneous system for various organic reactions,³⁴⁻⁴¹ encouraged us to measure the efficiency of AMA in the nitration of aromatic compounds. Therefore, we report herein that AMA could conveniently be used to generate the nitronium ion by using magnesium nitrate (Scheme 1).

A typical experimental procedure is as follows: Mg(NO₃)₂.6H₂O (1 mmol) was added to a mixture of MeSO₃H (1 ml, 15 mmol) and Al₂O₃ (acidic type 506 C, 0.27 g, 3 mmol) and after a few minutes the aromatic compound 1 (1 mmol) was added. The mixture was stirred for the appropriate time and then the reaction mixture was extracted with ethyl acetate and after evaporation of the organic layer nitrated products 2 were obtained in a good to excellent yields. We also carried out the same reaction with a number of nitrate salts such as Cd(NO₃)₂.6H₂O, Ni(NO₃)₃.9H₂O, Cu(NO₃)₂.3H₂O and Zn(NO₃)₂.6H₂O. Although Zn(NO₃)₂.6H₂O showed reactivity with 1a in the presence of AMA to give the nitrate salts gave a mixture of nitrate and oxidised products and the reactions were not complete even after 24 h.

Under the best reaction conditions described above, various aromatic compounds (Table 1, Entries 1–14) were nitrated. The products were identified by ¹H and ¹³C NMR, MS and IR analysis. The results are listed in Table 1.

According to the Table 1, various aromatic compounds with electron-donating and electron-withdrawing groups are nitrated by AMA. Because nitrophenols are very important organic synthesis intermediates, various phenolic compounds

Scheme 1

were nitrated using AMA (entries 1-6, 9 and 10). In the case of phenol, the nitration reaction afforded 4-nitrophenol and 2-nitrophenol in 47 and 45% isolated yields, respectively (Entry 1). However, other phenolic compounds containing an electron-withdrawing group at the para position gave regioselectively nitration at the position ortho to the OH group (entries 2-6). It is interesting that p-aminophenol gave only 4-amino-2-nitrophenol (2d) in high yield (entry 4). It should be noted that amino groups were protonated in the presence of AMA (as an acidic media) to give the -NH3⁺ group, which is electron-withdrawing. Therefore, nitration of *p*-aminophenol (entry 4) and *p*-bromoaniline (Entry 11) occurred regioselectively at the ortho position relative to the OH and Br groups, respectively. The nitration of substituted benzaldehydes such as 4-methoxy- and 4-chlorobenzaldehydes afforded the nitrated products with the NO2ortho to the -OMe and -Cl groups, respectively (entries 7 and 8). In the case of 2-hydroxybenzaldehyde, the reaction was regioselective and only 2-hydroxy-4-nitrobenzaldehyde (2i) was obtained (entry 9). It is interesting to note that less reactive aromatic compounds such as chlorobenzene, cyanobenzene, and nitrobenzene were also nitrated in the presence of AMA in moderate to good yields (entries 12-14). Finally, although the corresponding 4-nitro-1,3-benzenediol was obtained in 85% yield by the nitration of 1,3-benzenediol (entry 10), under the same reaction conditions, the reaction of 1,4-benzenediol and 1,2-benzenediol (entries 15 and 16) resulted in complicated products containing nitrated and oxidised compounds.

In conclusion, we have discovered a very simple and efficient nitration process in the presence of AMA. This new nitration process employs AMA as heterogeneous system without using a halogenated organic solvent and the nitration of highly activated aromatic compounds such as phenols and anilines by magnesium nitrate hexahydrate were carried out at room temperature in air in good to excellent yields and also the reaction was easily worked-up.

Experimental

General

¹H NMR and ¹³C NMR spectra were measured on a Bruker Advance DPX FT 250 and 62.9 MHz spectrometer with TMS as an internal standard. IR spectra were obtained on Perkin–Elmer or FTIR-800 instruments. Mass spectra were obtained on a Shimadzu GCMS0QP 1000EX at 20 and/or 70 eV. Elemental analyses were performed on PerkinElmer 240-B microanalyser. Al₂O₃ (acidic type 506 C) was purchased from the Merck company.

^{*} Correspondent. E-mail: hossaini@susc.ac.ir

Entry	Aromatic compounds	Reaction time	Nitrated compound/% yieldª
I	С—он 1а	30 min	0 ₂ N-С-он С-он С-ос 2a (47) 2a' (42)
2	но ₂ с-Дон 1b	90 min	$HO_2C - OH$ $2b (98)$
}	СІОН 1с	60 min	$C \mapsto OH$
Ļ	H ₂ NС-ОН 1 d	6 h	H ₂ N-OH
5	0 ₂ N-С-ОН 1е	24 h	$2d (98)$ NO_2 $O_2N - OH$
3	онс	35 min	2е (95) онс-Сурон
,	OHC-OMe	30 min	2f (98) OHC-OMe
8	сі—Ду—сно 1h	4 h	2g (95) O ₂ N CI→→→→−CHO 2h (87)
I	CHO OH Ii	40 min	$\begin{array}{c} \text{CHO} \\ \text{O}_2\text{N} - ^{\text{CHO}} \\ \text{O}_2\text{N} - ^{\text{CHO}} \\ \text{OH} \\ \text{2i (90)} \\ \text{HQ} \end{array}$
0	Д—он	30 min	O ₂ N-OH
1	$H_2N \rightarrow Br$ 1k	24 h	$2j (85)$ $H_2N - Pr$
2		20 h	$2k (95) \xrightarrow{NO_2} Cl \xrightarrow$
3	CN 1m	24 h	$21 (35)^{b} 21' (65)^{b}$
4	\sum -NO ₂ 1n	48 h	$2m (82)$ $O_2N \longrightarrow NO_2$
5	но-Ср-он 10	6 h	2n (31) decomposed
16	он Ф-он 1р	6 h	decomposed

Table 1 Nitration of aromatic compounds using AMA and

CAUTION: The isolation of nitrated products must be carried out carefully with due precautions as some such compounds are known human carcinogens.

JOURNAL OF CHEMICAL RESEARCH 2008 723

(1) Aromatic compounds without amino groups

Mg(NO₃)₂.6H₂O (1 mmol) was added to a mixture of MeSO₃H (1.0~ml) and $\rm Al_2O_3$ (0.27 g, 3.0 mmol). After a few minutes the aromatic compound (1 mmol) was added to this mixture. The mixture was stirred at room temperature for the appropriate time (Table 1). Then the mixture was poured into water (20 ml) and extracted four times with ethyl acetate (40 ml). The organic layer was washed with a saturated solution of sodium bicarbonate (20 ml), dried over Na₂SO₄ and evaporated under reduced pressure. The resulting product was purified by preparative TLC (silica) using a solvent mixture of EtOAc-hexane, 1:2 as eluent to afford the pure nitrated derivative.

(2) Aromatic compounds with amino groups

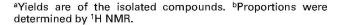
The reaction conditions were as described above but the work-up was a little different. After the reaction was completed the mixture was poured into a saturated solution of sodium bicarbonate (20 ml) and extracted five times with ethyl acetate (40 ml). Then the organic layer was dried over Na2SO4 and evaporated under reduced pressure. The resulting product was purified as described above.

4-Nitrophenol (2a): Yellow powder; m.p. 112-114°C (lit.,42 114°C); IR(KBr) (v_{max}/cm⁻¹): 3331, 1614, 1592, 1500, 1346; ¹H NMR (250 MHz, $CDCl_3$): δ 8.18 (d, 2H, J = 5.50 Hz, ArH), 7.00 (d, 2H, J=5.49 Hz, ArH), 6.35 (s, 1H, -OH); GC-MS/EI: m/z (%)=139 (M+, 14), 109 (50), 81 (33), 65 (84), 53 (31), 46 (22), 39 (100), 30 (77), 28 (41).

2-Nitrophenol (2a'): Yellow powder; m.p. 42-44 °C (lit.,40 45 °C); IR(KBr) (v_{max}/cm^{-1}) : 3241, 1623, 1606, 1593, 1538, 1479; ¹H NMR (250 MHz, CDCl₃): δ 10.5 (s, 1H, –OH), 8.10 (d, 1H, J = 8.50 Hz, ArH), 7.59 (m, 1H, ArH), 7.16 (d, 1H, J = 8.4 Hz, ArH), 7.00 (m, 1H, ArH); GC-MS/EI: m/z (%) = 139 (M+, 40), 109 (35), 81 (55), 65 (60), 53 (38), 39 (100), 30 (66).

4-Hydroxy-3-nitrobenzoic acid (2b): Yellow powder; m.p. 179-182 °C (lit., ⁴³ 184 °C); IR(KBr) (v_{max}/cm⁻¹): 3309, 3089, 2842, 1689, 1627, 1539, 1434, 1342; ¹H NMR (250 MHz, DMSO): δ 11.73 (brs, 1H, -CO₂H), 10.23 (brs, 1H, -OH), 8.33 (s, 1H, ArH), 7.98 (d, 1H, J = 7.9 Hz), 7.16 (d, 1H, J = 7.9 Hz, ArH); GC-MS/EI: m/z (%) = 183 (M+, 7), 149 (22), 129 (17), 97 (38), 57 (100)

4-Chloro-2-nitrophenol (2c): Yellow powder; m.p. 84-86 °C (lit.,42 85-89°C); IR(KBr) (v_{max}/cm⁻¹): 3490, 1631, 1531, 1469, 1384, 1346, 1238; ¹H NMR (250 MHz, DMSO): δ 11.33 (brs, 1H, -OH), 7.90 (s, 1H, ArH), 7.54 (d, 1H, J = 8.9 Hz), 7.14 (d, 1H, J = 8.9 Hz, ArH); GC-MS/EI: m/z (%) = 173 (M+, 16), 156 (7), 143 (26), 128 (10), 115 (41), 99 (39), 73 (29), 63 (100), 51 (20), 37 (13), 30 (26).


4-Amino-2-nitrophenol (2d): Yellow powder; m.p. 123–125°C (lit.,⁴² 125–127°C); IR(KBr) (ν_{max}/cm⁻¹): 3460, 3255, 2958, 1627, 1546, 1469, 1373, 1234; ¹H NMR (250 MHz, DMSO): δ 9.64 (brs, 2H, -NH2), 8.92 (brs, 1H, -OH), 7.30 (s, 1H, ArH), 7.23 (d, 1H, J = 8.4 Hz), 7.09 (d, 1H, J = 8.4 Hz, ArH); GC-MS/EI: m/z (%) = 154 (M+, 5), 137 (14), 124 (6), 108 (12), 79 (47), 53(100), 28 (10).

2,4-Dinitrophenol (2e): Yellow powder; m.p. 107–110°C (lit.,42 108–112°C); IR(KBr) (v_{max}/cm⁻¹): 3587, 3529, 1608, 1569, 1531, 1523, 1438, 1357, 1280; ¹H NMR (250 MHz, DMSO): δ 11.02 (brs, 1H, -OH), 8.65 (s, 1H, ArH), 8.26 (d, 1H, J = 9.3 Hz), 7.22 (d, 1H, J = 9.2 Hz, ArH); GC-MS/EI: m/z (%) = 184 (M+, 4), 167 (10), 129 (10), 111 (12), 85 (22), 69 (100).

4-Hydroxy-3-nitrobenzaldehyde (2f): Yellow powder; m.p. 138-140 °C (lit, ⁴³ 140–141 °C); IR(KBr) (v_{max} (cm ⁻¹): 3236, 2816, 1693, 1620, 1562, 1423, 1334, 1269, 1126; ¹H NMR (250 MHz, CDCl₃): δ 11.01 (brs, 1H, -OH), 9.94 (s, 1H, -CHO), 8.63 (s, 1H, ArH), 8.14 (d, 1H, J = 3.5 Hz), 7.33 (d, 1H, J = 3.5 Hz, ArH); GC-MS/EI: m/z(%) = 167 (M+, 10), 149 (25), 129 (11), 111 (11), 85 (23), 69 (100).

4-Methoxy-3-nitrobenzaldehyde (2g): Yellow powder; m.p. 99– 101 °C (lit.,⁴² 97–100 °C); IR(KBr) (v_{max}/cm ⁻¹): 3487, 3001, 2623, 1697, 1620, 1539, 1431, 1357, 1288; ¹H NMR (250 MHz, DMSO): δ 9.84 (s, 1H, -CHO), 8.10 (s, 1H, ArH), 8.07 (d, 1H, J = 8.7 Hz, ArH), 7.45 (d, 1H, J = 8.7 Hz, ArH), 3.96 (s, 3H, -OMe); GC-MS/EI: *m/z* (%) = 181 (M+, 6), 167 (11), 149 (11), 129 (8), 111 (8), 85 (13), 69(100)

4-Chloro-3-nitrobenzaldehyde (2h): Yellow powder; m.p. 140-147°C (lit.,⁴² 148–150°C); IR(KBr) (v_{max}/cm⁻¹): 3101, 2873, 2715, 2596, 1701, 1593, 1431, 1330; ¹H NMR (250 MHz, DMSO): δ 10.1 (s, 1H, -CHO), 8.22 (s, 1H, ArH), 7.90 (d, 1H, J=3.1 Hz, ArH), 7.55 (d, 1H, J = 3.1 Hz, ArH); GC-MS/EI: m/z (%) = 185 (M+, 9), 167 (10), 149 (22), 129 (15), 97 (19), 73 (45), 57(100).

724 JOURNAL OF CHEMICAL RESEARCH 2008

2-Hydroxy-5-nitrobenzaldehyde (2i): Yellow powder; m.p. 127-129 °C (lit., ⁴² 129–130 °C); IR(KBr) (ν_{max} /cm⁻¹): 3460, 3074, 2935, 1666, 1620, 1477, 1334, 1323; ¹H ŃMR (250 MHz, DMSO): δ 11.5 (brs, 1H, -OH), 9.91 (s, 1H, -CHO), 8.49 (s, 1H, ArH), 8.32 (d, 1H, J = 9.1 Hz, ArH), 7.05 (d, 1H, J = 9.1 Hz, ArH); GC-MS/EI: m/z (%) = 167 (M+, 11), 149 (13), 129 (7), 111 (12), 85 (24), 69 (100).

4-Nitro-1,3-benzenediol (2): Yellow powder; m.p. 120–123 °C (lit.,⁴² 122 °C); IR(KBr) (v_{max}/cm ⁻¹): 3388, 3300, 1628, 1592, 1525, 1511, 1444, 1327, 1284; ¹H NMR (250 MHz, CDCl₃): δ 10.2 (brs, 1H, -OH), 8.13 (d, 1H, J = 9.2 Hz, ArH), 7.25 (s, 1H, ArH), 6.62 (d, 1H, J = 9.2 Hz, ArH), 6.44 (brs, 1H, –OH); GC-MS/EI: m/z (%) = 155 (M+, 7), 139 (31), 121 (10), 109 (74), 77 (12), 65 (47), 51 (19), 39 (48), 30 (25), 28 (100).

4-Bromo-3-nitroaniline (2k): Yellow powder; m.p. 125-128°C (lit.,⁴² 128–132 °C); IR(KBr) (ν_{max} /cm⁻¹): 3475, 3363, 1639, 1531, 1346; ¹H NMR (250 MHz, DMSO): δ 9.00 (s, 1H, Ar*H*), 8.75 (d, 1H, J = 9.0 Hz, ArH), 8.50 (d, 1H, J = 9.0 Hz, ArH), 6.41 (brs, 2H, $-NH_2$; GC-MS/EI: m/z (%) = 217 (M+, 3), 213 (6), 185 (7), 149 (22), 129 (14), 97 (23), 73 (49), 57 (100).

4-Nitrochlorobenzene (21): Yellow powder; m.p. 82–84°C (lit.,⁴² 84–86°C); IR(KBr) (v_{max}/cm⁻¹): 3106, 1604, 1578, 1519, 1477, 1344; ¹H NMR (250 MHz, DMSO): δ 8.24 (d, 2H, J = 8.5 Hz, ArH), 752 (d, 2H, J = 8.5 Hz, ArH); GC-MS/EI: m/z (%) = 157 (M+, 15), 129 (21, 127 (19), 111 (84), 99 (33), 75 (100).

2-Nitrochlorobenzene (21'): Yellow powder; m.p. 30-32 °C (lit.,42 32°C); IR(KBr) (v_{max}/cm⁻¹): 3096, 1688, 1550, 1467; ¹H NMR (250 MHz, DMSO): δ 7.32-7.87 (m, 4H, ArH); GC-MS/EI: m/z (%) = 157 (M+, 15), 129 (21, 127 (20), 111 (83), 99 (33), 75 (100).

3-Nitrobenzonitrile (2m): Yellow powder; m.p. 110-113 °C (lit.,42 114–117°C); IR(KBr) (v_{max}/cm ⁻¹): 3111, 2955, 1926, 2238, 1751, 1619, 1582, 1533, 1463; ¹H NMR (250 MHz, DMSO): 8 8.76 (s, 1H, ArH), 7.53–8.74 (m, 3H; GC-MS/EI: m/z (%) = 148 (M+, 21), 102 (75), 90 (34), 75 (22), 57 (100).

1,3-Dinitrobenzene (2n): Yellow powder; m.p. 84-85°C (lit.,42 86–89°C); IR(KBr) (v_{max} /cm ⁻¹): 3112, 1616, 1544, 1471, 1346; ¹H NMR (250 MHz, DMSO): δ 8.84 (s, 1H, Ar*H*), 7.62–8.61 (m, 3H); GC-MS/EI: m/z (%) = 168 (M+, 13), 122 (24), 76 (100), 75 (76), 57 (23).

We gratefully acknowledge the support of this work by the Shiraz University Research Council.

Received 16 September 2008; accepted 24 October 2008 Paper 08/0173 doi: 10.3184/030823408X390181 Published online: 12 December 2008

References

- 1 T. Esakkidurai and K.J. Pitchumani, Mol. Catal. A: Chem., 2002, 185, 305.
- 2 S. Samajdar, F.F. Becker and B.K. Banik, Tetrahedron Lett., 2000, 41, 8017.

- 3 A. Botvay, A. Mathe and L. Poppl, Polymer, 1999, 40, 4965.
- 4 A.M.M. Tasneem, K.C. Rajanna and P.K. Saiparakash, Synth. Commun., 2001, 31, 1123.
- 5 N. Ono, The nitro group in organic synthesis, Wiley-VCH, Weinheim, 2001. G.A. Olah, R. Malhotra and S.C. Narang, Nitration: methods and 6 mechanisms, Wiley-VCH, Weinheim, 1989.
- 7 R.G. Coombes, *Comprehensive organic chemistry*, I.O. Sutherland (ed.)VCH New York, 1990.
- 8 G.A. Olah and S.J. Kuhn, J. Am. Chem. Soc., 1962, 84, 3684.
- X. Peng, H. Suzuki and C. Lu, Tetrahedron Lett., 2001, 42, 4357.
- R.R. Bak and A.J. Smallridge, Tetrahedron Lett., 2001, 42, 6767. 10
- N. Iranpoor, H. Firouzabadi and R. Heydari, Synth. Commun., 2003, 33, 703. 11
- M.M.V. Ramana, S.S. Malik and J.A. Parihar, Tetrahedron Lett., 2004, 12 45.8681.
- 13 P. Strazzolini, A.G. Giumanini and A. Runcio, Tetrahedron Lett., 2001, 42, 1387.
- 14 J.J. Bozell and J.O. Hoberg, Tetrahedron Lett., 1988, 39, 2261.
- D. Bahulayan, G. Narayan, V. Sreekumar and M. Lalithambika, Synth. 15 Commun., 2002, 32, 3565.
- 16 G.A. Olah, V.V. Krishnamurthy and S.C. Narang, J. Org. Chem., 1982, 47, 596.
- 17 A. Cornelis and P. Laszlo, Synthesis, 1985, 909.
- 18 J.M. Mellor, S. Mittoo, R. Parkes and R.W. Millar, Tetrahedron, 2000, 56, 8019.
- A.R. Hajipour and A.E. Ruoho Tetrahedron Lett., 2005, 8307. 19
- 20 P. Zhang, M. Cedilote, T.P. Cleary and M.E. Pierce, Tetrahedron Lett., 2007, 48, 8659.
- J.M. Riego, Z. Sedin, J.M. Zaldivar, N.C. Marziano and C. Tortato, 21 Tetrahedron Lett., 1996, 37, 513.
- M.A. Zolfigol, E. Ghasemi and E. Madrakian, Synlett, 2003, 191. 22
- 23 M.A. Zolfigol, E. Madrakian and E. Ghasemi, Molecules, 2002, 7, 734.
- 24 W.-P. Yin and M. Shi, J. Chem. Res., 2006, 549.
- 25 H.-B. Sun, R. Hua and Y. Yin, J. Org. Chem., 2005, 70, 9071.
- G.A. Olah, V. Reddy and S. Prakash, Synthesis, 1992, 1087. 26
- 27 B. Bosnich, R.S. Nyholm, P.J. Pauling and M.L. Tobe, J. Am. Chem. Soc., 1968, 90, 4742.
- N. Nonoyama, K. Chiba, K. Hisatome, H. Suzuki and F. Shintani, 28 Tetrahedron Lett., 1999, 40, 6933.
- 29 J.A.R. Rodrigues, A.P.D.O. Filho, P.J.S. Moran and R. Custodio, Tetrahedron, 1999, 55, 6733.
- 30 M. Kimura, K. Kajita, O. Naoyuki and S. Morosawa, J. Org. Chem., 1990, 55, 4887.
- 31 C.G. Frost, J.P. Hartley and D. Griffin, Tetrahedron Lett., 2002, 43, 4789.
- 32 T.N. Parac-Vogt and K. Binnemans, Tetrahedron Lett., 2004, 45, 3137.
- 33 R. Rajagopal and K.V. Srinivasan, Ultrason. Sonochem., 2003, 10, 41.
- 34 H. Sharghi and B. Kaboudin, J. Chem. Res. (S), 1998, 628.
- H. Sharghi and M. Hosseini Sarvari, J. Chem. Res. (S), 2001, 446. 35
- H. Sharghi and M. Hosseini Sarvari, Synth. Commun., 2003, 33, 205. 36
- 37 H. Sharghi and M. Hosseini Sarvari, Tetrahedron, 2003, 59, 3627.
- 38 H. Sharghi and M. Hosseini Sarvari, J. Org. Chem., 2003, 68, 4096.
- 39 H. Sharghi and M. Hosseini Sarvari, Synthesis, 2003, 6, 879.
- H. Sharghi and M. Jokar, Heterocycles, 2007, 71, 2721. 40
- 41 M. Hosseini-Sarvari and M. Tavakolian, J. Chem. Res., 2008, 318.
- 42
- Vogel's Text book of practical organic chemistry, 4th edn, Longman, London & New York, 1986.
- A.K. Bose, S.N. Ganguly, M.S. Manhas, S. Rao, J. Speck, U. Pekelny and 43 E. Pombo-Villars, Tetrahedron Lett., 2006, 47, 1885.